
Inferring Change Effort from Configuration Management Databases
Todd L. Graves

�
and Audris Mockus

�
�
National Institute of Statistical Sciences and

� �
Bell Laboratories

ABSTRACT
In this paper we describe a methodology and algorithm for
historical analysis of the effort necessary for developers to
make changes to software. The algorithm identifies factors
which have historically increased the difficulty of changes.
This methodology has implications for research into cost
drivers. As an example of a research finding, we find that
a system under study was “decaying” in that changes grew
more difficult to implement at a rate of 20% per year. We
also quantify the difference in costs between changes that
fix faults and additions of new functionality: fixes require
80% more effort after accounting for size. Since our method-
ology adds no overhead to the development process, we
also envision it being used as a project management tool:
for example, developers can identify code modules which
have grown more difficult to change than previously, and
can match changes to developers with appropriate exper-
tise. The methodology uses data from a change management
system, supported by monthly time sheet data if available.
The method’s performance does not degrade much when the
quality of the time sheet data is limited. We validate our
results using a survey of the developers under study: the
change efforts resulting from the algorithm match the de-
velopers’ opinions. Our methodology includes a technique
based on the jackknife to determine factors that contribute
significantly to change effort.

1 Introduction

A particularly important quantity related to software is the
cost of making a change to it. Change management data
contain a number of measurements on each change, such as
its size and type, which one expects to be related to the ef-
fort required to make the change. In this paper we discuss
our methodology and algorithms to assess the influence of
these factors. This methodology has enormous potential for
serving as a foundation for a variety of historical studies of
effort. One example from this research is our finding that
the code under study “decayed” in that changes to the code
grew harder to make at a rate of 20% per year. We were
also able to measure the extent to which changes which fix
faults in software are more difficult than comparably sized
additions of new functionality: fault fixes are approximately
80% more difficult. An important part of our methodology is

the capability of assessing the amount of statistical variabil-
ity of these estimated coefficients; this technique uses the
jackknife [1].

Our methodology, since it adds no additional overhead to the
development process, could be embodied in a project man-
agement tool. The tool would be useful for identifying mod-
ules of the code which are too costly to change, so that they
might be candidates for rewriting, or for assessing develop-
ers’ expertise with different modules. The tool would have
wide applicability: it could be used on any version control
system which stores the generic variables we discuss, such as
date, size, owner, and description of the purpose of a change.

We validate our results using a number of techniques. We
conducted a survey of developers in which we asked them
to report how much effort they invested in making a change,
and we find that the estimated efforts obtained from our al-
gorithm are closely related to developers’ opinions.

By studying effort at the level of individual changes, we are
able to judge the influence of factors whose contributions
are not estimable at a large project level due to aggregation.
These factors might include the purpose and size of individ-
ual changes.

The next section describes the project under study as well
as the quality and structure of the databases. In � 4 we de-
scribe in detail the effort estimation algorithm and present
the results. � 5 demonstrates the high quality of the results
in several ways: we validate the results using a developer
survey, and compute estimates of variability of coefficients
using the jackknife.

2 Change and Effort Data

We are studying changes to source code of 5ESS [2] which is
a large, distributed, high availability software product. The
product was developed over two decades and has tens of mil-
lions of lines of source code as well as several hundred thou-
sand changes. The source code is mostly written in the C
programming language augmented by Specification and De-
scription (SDL) language. The tools used to process and an-
alyze software change data are described in [3].

We use configuration management (CM) data to obtain reli-

1

able estimates of the change effort. We also use time sheet
data from the financial support system (FSS) to improve
those estimates. The CM data record all changes to the
code, their size and content, submission time, and developer.
The FSS data record only monthly effort for each developer.
The link between the two databases is developer name. The
change effort cannot be uniquely determined from FSS data
because developers tend to work on multiple changes during
most months and 14 percent of the changes start and end in
different months.

The CM database has been started in 1984, while the current
structure of FSS started in 1991.

2.1 Change data

The extended change management system (ECMS) and
source code control system (SCCS) were used to manage the
source code. Among other things, the ECMS keeps relations
that map developer login to developer full name. The ECMS
groups atomic changes (deltas) recorded by SCCS into logi-
cal changes referred to as Maintenance Requests (MRs). The
open time of the MR is recorded in ECMS. We use time of
the last delta as MR close time. We used the MR change ab-
stract to infer the purpose of a change [4]. In addition to the
three primary reasons for changes (repairing faults, adding
new functionality, and improving the structure of the code;
see, for example, [5]), we defined a class for changes that
implement code inspection suggestions since this class was
easy to separate from others and had distinct size and interval
properties [4].

The SCCS database records each delta as a tuple including
the actual source code that was changed, login of the de-
veloper, MR number, date, time, numbers of lines added,
deleted, and unchanged.

Each logical change (MR) identifies developer login and full
name. The full name can be written in numerous ways and
the five most popular ones are of the form “F. M. Last”,
“FMLast”, “F. Last”, “FLast” and “login”. The capitaliza-
tion, periods, and spaces can vary substantially. The last
form does not provide any name, but the name could be ob-
tained by looking at other MRs that share the login.

To use FSS data we selected full developer names from FSS
data, identified their logins using ECMS data, and then se-
lected all deltas and MRs that had the appropriate login.
Since identification of login using full name was not diffi-
cult (most of the names were spelled correctly in the first
form shown above) and logins were unique in the considered
sample (except for one developer who shortened his login in
1992) we are confident that we obtained all changes made by
developers under study.

2.2 Reported Effort

In the considered project the effort was classified based on
organizational accounting and reporting structure. The ma-

jor development effort categories are mapped to a list of ef-
fort charging numbers, which are used by staff to log their
working hours. Effort, measured in Average Technical Head
Count Months (ATHCM), is recorded for each person every
month broken down by charging numbers. The data are ob-
tained from bi-weekly time sheets.

The FSS data were available from 1991, but we selected a
four year period from 1994 to 1998 that had the most uni-
formly reported data. The FSS data before 1994 did not con-
tain some of the developers, despite the fact that those devel-
opers were actively changing the code. We further cleaned
the data by removing duplicate month/project/developer en-
tries. Anecdotal evidence suggested that developers record
their total efforts accurately but often have trouble dividing
their efforts across charging numbers. Also, it was difficult
reliably to link charging numbers and software changes, so
we only used the total effort reported per person per month
(by adding a person’s effort over all charging numbers in one
month).

We selected effort records of eleven of the best developers
in one part of the organization. Those developers had at
least seven years of experience in 1994. We later interviewed
seven of those developers to learn how they perceived the ef-
fort they spent on a subset of the changes they did in the past
two years (1996 and 1997). The time series of their reported
effort is shown in Figure 1. The eleven developers completed
2794 changes (MRs) in the 45 month period under study.

A
T

H
C

M

1994 1995 1996 1997

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 1: Reported monthly effort of 11 developers

We use the developer name (see � 2.1) to relate FSS data to
software changes.

3 Model framework

The following framework can help define an appropriate
model and estimation procedure. Developer monthly effort
is spread relatively uniformly over the month. According
to [6] on average only 47 percent of developer effort in the

considered organization goes to coding software changes.
Hence it is natural to assume that there is significant back-
ground effort that consumes part of the monthly effort. Fig-
ure 2 shows an example of the distribution of effort over four
months for one developer. The thickest line shows total de-
veloper effort. It is relatively flat indicating that total effort
is spent relatively uniformly over time (we are excluding va-
cation time from consideration). The thin solid line shows
effort not associated with changes. As changes happen, part
of the total effort is diverted to those changes denoted by
dotted and dashed lines. The fraction of the diverted effort
depends on the type or importance of a change; for exam-
ple, fault fixes tend to require a larger fraction of the effort
because they have to be finished in a relatively short period
of time, while new code changes take longer and are more
likely to be interrupted by fault fixes or other activities not
associated with the code changes.

Time

E
ff

or
t

Developer effort

Change B effort

January February March April

Change C effort

Change A effort

Background effort

Figure 2: Time lines of effort distribution over changes

To associate the monthly effort with change effort we need
to address three basic issues:

1. how the actual effort spent by a developer on a partic-
ular month corresponds to the effort reported for that
month;

2. how the actual effort spent by developer on a particular
change corresponds to change open, close, and atomic
change times;

3. how to separate effort not related to changes.

Discussions with several developers indicated that the spent
effort tends not to be shifted across months and that the
amount of work on an MR performed before its recorded
open time or after its last delta time is insignificant. We did
not address the issue of whether the effort is uniformly dis-
tributed over the time the MR is open. The proportion of
background effort was obtained from [6] who studied the
same project four years earlier. Since our method is scale
invariant the proportion can be applied to the final result if
the absolute value of change effort is desired.

To use monthly reported effort data we took the simplest ap-
proximation, in which all changes open during a month share
part of the effort spent during the month. That proportion is

Table 1: Starting Values for Iterative Fitting Procedure.

Jan Feb Mar Apr Total
is Change A open yes yes yes yes
is Change B open no yes yes no
is Change C open no no yes yes
Change A effort 0.8 0.6 0.3 0.4 2.1
Change B effort 0 0.6 0.3 0 0.9
Change C effort 0 0 0.3 0.4 0.7
reported effort 0.8 1.2 0.9 0.8 3.7

determined using the modeling technique described in the
next section. As the starting point for that procedure we
chose to distribute effort equally among MRs done by the
same developer in one month. The results are robust to large
changes in starting values, so we did not attempt to specify
starting values more precisely. Example starting values for
one developer are shown in Table 1. The table represents
the effort shown in Figure 2. The total effort for Change A
in the example was 2.1 ATHCM, 0.9 ATHCM for Change B
and 0.7 ATHCM for Change C.

4 Effort Estimation Methodology and Results

In this section we discuss the procedure we follow to identify
factors that affect effort, given the sort of data discussed ear-
lier. We first describe the procedure itself, which is the main
contribution. The regression model quantifies factors that
predict effort and illustrates one application of this method-
ology. In � 5.3 we provide advice about how to proceed when
time sheet data are unavailable.

4.1 Iterative algorithm to estimate change effort

Consider the data corresponding to a single developer; the
generalization to multiple developers is natural but initially
confusing. These data may be thought of as a two-way table,
as in the numeric entries in Table 1, in which rows corre-
spond to MRs and columns to months. The reported monthly
efforts for the developer are the column sums of this table.
The cells of the table represent the amount of effort that the
developer expends on a particular MR in that month. They
are not observable, except that a majority of cells contain ze-
roes because the MR was not open during that month. The
objective is to obtain the row sums, the total effort associ-
ated with an MR. To accomplish that we use a number of
quantities from the change management system which are
closely related to MR efforts. We will use an iterative algo-
rithm to impute values of the cells and the row sums and use
the reported effort to calibrate and improve these imputed
values. To initialize the procedure we spread the monthly ef-
fort evenly across the MRs that were open during that month.
We tried a number of other ways to to initialize, and obtained
very similar results in all cases.

After the initial guess the algorithm contains four steps that
are repeated until convergence of the error measure (10 iter-
ations were always enough to obtain convergence).

1. Compute row sums to obtain estimates of total MR ef-
forts.

2. Fit a regression model, such as in Equation 1, of im-
puted MR effort on the factors that predict MR effort.

3. Rescale the rows in the imputed monthly MR effort ta-
ble so that the new row sums are equal to the regres-
sion’s fitted values.

4. Rescale the columns of the table so that the column
sums are equal to the observed monthly efforts.

We prefer to use a generalized linear model in the second
step since we can then guarantee that fitted values are posi-
tive.

4.2 Valuable predictors of change effort

We found four types of variables to be critical contributors
to estimated change effort. Not surprisingly, the size of a
change is important. Size can be measured by the number
of files changed by an MR, the sum of the numbers of lines
added and deleted in the MR, as well as many other size
measures, but the measure we found to be slightly better than
these is the number of deltas in the MR.

Another useful predictor is the developer making the change.
Our model found that one developer tends to expend 2.75
times as much effort as another developer to make a com-
parable change, and although we did not find differences
between developer effects to be statistically significant, we
thought it was important to leave this variable in the model.
In other studies, developer productivity has varied dramat-
ically, see, for example, [7]. Developer effects would be
significant in studies which do not restrict attention to de-
velopers that have similar experience. However, even if we
had found significant differences, their interpretation would
be problematic. Not only could they appear because of dif-
fering developer abilities, but the seemingly less productive
developer could be the expert on a particularly difficult area
of the code, or that developer could have more extensive du-
ties outside of writing code.

We found that the purpose of the change (as estimated using
the techniques of [4]) also had a strong effect on the effort
required to make a change. Bug fixes are more difficult than
comparably sized additions of new code by approximately a
factor of 1.8. Bug fixes are more difficult than additions of
new code even before allowance for the size of the change,
although additions of new code are generally significantly
larger.

The last significant predictor of the change effort was the
date the change was opened. We were interested to see

if there was evidence that the code was getting harder to
change, or decaying, as discussed in [8, 9, 10]. There was
statistically significant evidence of a decay effect: we es-
timated that in our data, a change begun a year later than
an otherwise similar change would require 20% more effort
than the earlier change.

The specific model we fit in the modeling stage of the algo-
rithm was a generalized linear model ([11]) of effort. MR ef-
fort was modeled as having a Poisson distribution with mean
given below.

�
���

effort �����
	�� ��
���������
�����������
 Size �
� DATE ! (1)

Here the estimated developer coefficients, the
�

’s, ranged
from 0.35 to 0.96, with no statistically significant evidence
that the developers were different from each other (accord-
ing to standard deviation obtained via jackknife as in 5.2).
We defined

�#" �%$
, the coefficient for changes that add new

functionality, to be unity to make the problem identifiable,
then estimated the remaining type coefficients to be 1.8 for
fault fixes, 1.4 for restructuring and cleanup work, and 0.8
for inspection rework.

The value of & , which is the power of the number of files
changed which affects effort, we estimated to be 0.26, and its
jackknife standard error estimate is 0.06. Since &(')� , for
these data, the difficulty of a change increases sublinearly
with the change’s size. Large changes seem to be mostly
straightforward, while small changes may require large ini-
tial investments of time to find where to make the change.

was estimated to be 1.21, and its natural logarithm had a
standard error of 0.07, so that a confidence interval for

cal-

culated by taking two standard errors in each direction of the
estimated parameter is � !+* ��,.-0/#132 *
 	 ! 	5406�� � � ! 	87�9.� ! :8; � !
This implies that a similar change becomes 5% to 39%
harder to make in one year.

Surprisingly the interval required to complete the change was
not a significant predictor of change effort. Probably the size
of the change is a better measure of the effort than the in-
terval. Also, organizational rules required that fault fixes,
which are often difficult, be completed rapidly.

5 Validation

In this section we give details of how we confirm our re-
sults. We have used four methods: first, we conducted in-
terviews of developers and asked them how difficult some
of the changes they had made were. Second, we used the
jackknife, a resampling type method, to obtain estimates of
the uncertainty of the estimated coefficients. Then, we tested
the sensitivity of the results to the variation of the reported
effort. Finally, we note that the estimated coefficients have
values which are roughly what one would expect.<

We strictly speaking do not assume a Poisson distribution because effort
values need not be integers. The only critical part of the Poisson assumption
is that the variance of a random effort is proportional to its mean.

5.1 Developer survey

Seven of the developers were surveyed to assess their opin-
ions on the change effort. The survey asked them to “rate the
difficulty of the change to do in terms of effort and time rel-
ative to your experience”. Ten to thirty randomly selected
changes completed by the developer over past two years
were on the survey. Developers were asked to rate changes
into one of three levels of difficulty: easy, medium, and hard.
More details regarding the survey are in [4].

Since it is possible that some developers might be more re-
luctant to describe changes as difficult, it is important to ad-
just for the differences in developer opinions. Also the dif-
ficulty levels might not be linearly related to effort, i.e., the
difference between easy and medium might not be the same
as the difference between medium and hard.

To answer the first question we fitted a generalized linear
model

���
effort ��������������� � � � ,
	8,
�
� /#,
��� ,�������������� ���

The developer effect should remove the differences between
the developer opinions. Both effects were highly significant
(p-value much less than 	 ! 	 �). This shows that the estimated
effort predicts developer assessment and it also indicates that
there were substantial differences between what each devel-
oper perceived as hard.

To check if the developer assessment is linear we provide
boxplots of the imputed values broken by developer assess-
ment in Figure 3. We see that imputed effort clearly discrim-
inates the “hard” changes but does not differentiate between
“easy” and “medium” changes.

5.2 Jackknife

The jackknife (see, for instance, [1]) supplies a method of
estimating uncertainties in estimated parameters by rerun-
ning the estimation algorithm once for each data point in the
sample, each time leaving one of the data points out. A col-
lection of estimated parameters results, and the degree of dif-
ference between these parameters is related to the sampling
variability in the overall estimate. For example, suppose that
the statistic of interest is denoted by

�
, which was computed

from a dataset of size � . What is required is an estimate
of the standard error of

�
. For � � �89 * 9 !.! ! 9�� , compute� ��!
"

using the data set with the � th observation deleted. Set� ���# " �$� � �&%(' !) � � ��!
" . The jackknife estimate of standard

error of
�

is * �,+ �� '-
) � � � ��!
" + � ���# " ��.0/ ��1 . !
The jackknife and the bootstrap (for which see [13]) are ex-
amples of resampling techniques, which aim to extract ad-

-3
-2

-1
0

Easy Medium Hard

Perceived Effort

lo
g(

Im
pu

te
d

Ef
fo

rt)

Figure 3: Boxplots of imputed effort broken by developer
assessment. In a boxplot a data set is represented by a box
whose height spans the central 50% of the data. The upper
and lower ends of the box marks the upper and lower quar-
tiles. The data’s median is denoted by a dot within the box.
The dashed vertical lines attached to the box indicate the tails
of the distribution; they extend to the standard range of the
data (1.5 times the inter-quartile range). All other detached
points are “outliers.”[12].

ditional information from data sets by the process of con-
structing new data sets by sampling from the observed data.
A bootstrap replication selects � data points from a sample
of size � by sampling with replacement; the bootstrap re-
peats this process several hundred times and is generally pre-
ferred to the jackknife, computational time permitting. Ow-
ing to the time consuming iterative algorithm, we preferred
the jackknife since it required only eleven iterations. For the
purposes of resampling, there are only eleven datapoints in
the problem at hand. We have one point for each developer,
because omitting some of a developer’s changes leaves some
months in which the total effort of the MRs is less than the
observed monthly effort. Omitting some months will break
up MRs that span those months and the total effort for such
an MR cannot be calculated.

Jackknife estimates of standard error are 0.06 for & , 0.20 for
the natural logarithm of

�3254�6
, values between 0.19 and 0.30

for the natural logarithms of the developer coefficients, and
0.07 for the natural logarithm of

.

5.3 Sensitivity to reported effort

To test the sensitivity of the results to the reported effort
data and to check the validity of the methodology when fine
monthly efforts are not available we used yearly developer
efforts, which we believe are very reliable. We distributed
yearly developer efforts uniformly over 12 months. Then we
fitted the model to determine factors that contribute to the
change effort. The resulting estimated coefficients are close

to the ones obtained using finer monthly data. For example,
the estimate of & changed from 0.26 to 0.25, and the value
of

was the same to three decimal places. The only substan-
tial change was the coefficient for a developer who stopped
making changes for two extended periods of six and seven
months. As a consequence of this, this developer’s coeffi-
cient changed by about 22%.

We believe that effort is distributed relatively uniformly over
time (given that a person has quite restrictive limits on the
amount of effort she can spend in a limited amount of time)
and hence it is not essential to have very detailed effort
measurements over time to obtain principal factors that con-
tribute to change effort.

6 Discussion

The proposed methodology for assessing the principal pre-
dictors of code change effort from the historic software data
gives ways to impute the effort associated with every change
and a model to determine significant factors affecting change
effort. We determined that the purpose of a change is at least
as important as its size: since bug fixes are 1.8 times as diffi-
cult as additions of new code and since the size of a change
enters the model as the 0.26 power of the number of deltas
in the change, an addition of new code would have to in-
clude about ten times as many deltas as a fault fix for it to
require as much effort. This could not be established us-
ing more aggregate project effort because most projects mix
changes of different types. Also, we discovered a significant
increase in effort to make a similar change later in the pe-
riod. We estimate the rate of increase of required effort to be
about 20% per year, so this is the most prominent indicator
of code decay [10] that we are aware of. Our estimates of de-
veloper coefficients found that one developer required 2.75
times as much effort as another developer to perform compa-
rable changes, but our jackknife estimates of standard error
suggested that the differences between developers were not
statistically significant. We would likely have found larger
differences between developers had we not restricted atten-
tion to experienced developers.

We focus on methodology implementable with minimal or
no overhead to developers. This leads us to use source code
version control data, of a sort present in many software de-
velopment organizations, and to avoid collecting additional
information from the developers. Since the version control
data are not designed to answer questions about the software
development process, we developed and used automatic al-
gorithms to extract the information hidden in the data. We
first classified the changes according to their purposes and
then imputed the effort associated with each change. The
imputation method also produces the key factors contribut-
ing to the change effort.

Since the methodology is based on variables from version
control data which are widely collected, it should be easily
replicated. We spent a significant amount of effort validat-

ing the results using a developer survey and statistical tech-
niques. We found that the results are not very sensitive to
how reported developer effort is distributed over time. This
may be due to the fact that a person has natural limits on the
effort he can spend over a limited time. The important ramifi-
cation is that the change effort can be estimated based solely
on version control data and without the reported developer
effort. We believe that the methodology can be successfully
applied in any project that has one or more years of version
control data.

In the future we intend to use the estimated effort in tools
to assess code decay and to find developers expert in certain
areas of the system. In the immediate future we intend to
validate the methodology by applying it in a different orga-
nization.

ACKNOWLEDGEMENTS
We thank George Schmidt, Harvey Siy, Mark Ardis, David
Weiss, Alan Karr, Iris Dowden, and interview subjects for
their help and valuable suggestions. This research was
supported in part by NSF grants SBR-9529926 and DMS-
9208758 to the National Institute of Statistical Sciences.

REFERENCES

[1] B. Efron, The Jackknife, the Bootstrap and Other Re-
sampling Plans. Philadelphia, PA: Society for Indus-
trial and Applied Mathematics, 1982.

[2] K. Martersteck and A. Spencer, “Introduction to the
5ESS(TM) switching system,” AT&T Technical Jour-
nal, vol. 64, pp. 1305–1314, July-August 1985.

[3] A. Mockus, S. G. Eick, T. Graves, and A. F. Karr, “In-
frastructure for the analysis of software data,” Submit-
ted to Software Engineering and Knowledge Engineer-
ing.

[4] A. Mockus and L. G. Votta, “Identifying reasons for
software changes using historic databases,” Submit-
ted to ACM Transactions on Software Engineering and
Methodology.

[5] E. B. Swanson, “The dimensions of maintenance,” in
2nd Conf. on Software Engineering, (San Francisco,
California), pp. 492–497, 1976.

[6] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “Peo-
ple, organizations, and process improvement,” IEEE
Software, pp. 36–45, July 1994.

[7] B. Curtis, “By the way, did anyone study any real
programmers?,” in Empirical Studies of Programmers:
Papers presented at the First Workshop on Empirical
Studies of Programmers, (Washington, DC), pp. 256–
262, 1986.

[8] L. A. Belady and M. M. Lehman, “A model of large
program development,” IBM Systems Journal, pp. 225–
252, 1976.

[9] D. L. Parnas, “Software aging,” in Proceedings 16th In-
ternational Conference On Software Engineering, (Los
Alamitos, California), pp. 279–287, IEEE Computer
Society Press, 16 May 1994.

[10] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus, “Does code decay? assessing the ev-
idence from change management data,” Submitted to
IEEE Trans. Soft. Engrg., 1998.

[11] P. McCullagh and J. A. Nelder, Generalized Linear
Models, 2nd ed. New York: Chapman and Hall, 1989.

[12] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A.
Tukey, Graphical Methods For Data Analysis. Chap-
man & Hall, 1983.

[13] B. Efron and R. J. Tibshirani, An Introduction to the
Bootstrap. New York: Chapman and Hall, 1993.

